Towards Digital Enterprise


If you work in product development, you may have come across model-based engineering, or model-based systems engineering. But do you grasp the true idea behind these concepts? They are not actually brand-new concepts but have gained new momentum over the past few years. The driving force has been the need to design ever more complex systems of mechatronic products, and simultaneously making the products lighter, safer, more optimized, and more environmentally friendly. Technological advancements in engineering applications have acted as a catalyst.

In this blog post I try to clarify the idea of model-based engineering and model-based systems engineering, and why every company developing, and manufacturing products should adopt some or all of these practices. 

What is Model-Based Engineering and Model-Based Systems Engineering?

International Council on Systems Engineering (INCOSE) is a widely recognized not-for-profit organization with the objective of developing and spreading interdisciplinary principles and practices that enable successful systems. 

INCOSE further defines model-based engineering as:INCOSE

"An approach to engineering that uses models as an integral part of the technical baseline that includes the requirements, analysis, design, implementation, and verification of a capability, system, and/or product throughout the acquisition life cycle."

INCOSE further defines model-based systems engineering as:

"The formalized application of modelling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases."

So, what do these definitions really mean? To answer this, we first need to look at one more definition – the definition of model. And as always, there are multiple definitions available in the literature, some of which I’ve listed below

  • A model is a physical, mathematical, or otherwise logical representation of a system, entity, phenomenon, or process. (US DoD 1998)
  • A model is an abstraction of a system, aimed at understanding, communicating, explaining or designing aspects of interest of that system (Dori 2002)
  • A model is a simplified representation of a system at some particular point in time or space intended to promote understanding of the real system (Bellinger 2004)
  • A model is a representation of one or more concepts that may be realized in the physical world (Fredendall, Moore, and Steiner 2009)

In short, a model is a representation of something that can be realized in the real world, and a model is intended to help us understand the real-world object, system, or phenomenon. A model can represent a small entity or an extensive system of systems. Models are generally considered abstractions of the real world, but the more accurate a model is the more value you get from using it.

So, model-based engineering and model-based systems engineering are practices that aim at developing highly accurate models of even complex systems of systems, and thus enabling the use of these accurate models for downstream business operations to push the quality and efficiency of systems and operations to a new level.

If you feel like diving deeper into the theory and practices, I recommend taking a look at chapter Representing Systems with Models in the Guide to the Systems Engineering Body of Knowledge (SEBoK). 

Why are our current practices insufficient in the new era of complex products?

Engineering drawings have been around for thousands of years, with the earliest known building plans dating back to circa 4000 BC. Descriptive geometry and projection techniques were invented already during the industrial revolution of 18th century. Likewise, written specifications have been around for quite some time. Even though the introduction of three-dimensional modelling software in late 1960’s brought engineering one step closer to model-based approach, downstream processes have continued to rely heavily on information carried by traditional drawings.

So why not continue trusting good and well-known practices? The fact that engineering community has grown used to drawings is not really a good enough reason. There are severe flaws with these practices even when describing relatively simple products, let alone complex mechatronic systems:

  • When someone needs to use a drawing as source for information for designing interconnected parts, or for manufacturing parts, they need to interpret the drawings. Visualizing the actual part in one's mind based on 2D views is something many people struggle with.
  • Engineers are capable of interpreting drawings because they undergo training in creating and interpreting drawings, but even they don't always get it right.
  • Understanding engineering drawings is a talent not widely shared outside the engineering community. If clarification is not sought for, drawings are often misinterpreted by sourcing, manufacturing, and maintenance which results in costly errors, the need to rework parts, the need to correct drawings, and in some cases redesign the parts or products. And if clarification is sought for, it always ties up more than one person.

If you have never come across any of these issues, congratulations. But it is more than likely that drawings from your engineering department are plagued by many of the problems commonly seen in manufacturing industry. If you don’t think so, take a random sampling of manufacturing and/or assembly drawings from your company and see if they are truly unambiguous in defining the products. 

So what is the deal with drawings and written specifications not being sufficient to define more complex systems?

Well, engineering drawings are geared towards representing the geometry of parts and how these parts come together as assemblies. But what if electronics, electrics, and software are involved? The answer is more drawings and some documents, this time called schematics, or diagrams, and data sheets. Each of these individually tries to represent one specific aspect of a part or a product, but when you combine parts to a product the different systems interact, and this is where traditional engineering documentation fails. Even though engineers do their best to describe all aspects of a complex mechatronic system, drawings, schematics, diagrams, and all the other documents do not form an easily understandable and coherent definition of the entire system.

If it is hard for the engineers creating the system to document it fully, imagine how hard it is for anyone downstream to interpret such documentation! And everything needs to be kept together even if some small detail changes. When someone gets some small detail wrong, millions of Euros or even lives might be at stake. 

Why are models a better way to describe systems?

Simply because models make systems and their behavior easier to understand and simulate. Beginning with understanding what a product or part is like. State-of-the-art engineering applications with virtual reality support allow for life-like experience of seeing parts and assemblies. Making it far easier to understand what they are like and what it is like to interact with them, than interpreting 2D views. 

Interconnected, and computer interpretable models, which together can represent all aspects of real-world systems with the desired level of accuracy further improve the capability to understand how a given system will behave under different circumstances. Combining behavior models with 3D models allows for comprehensive and realistic MIL/SIL/HIL simulation of all aspects of a system. By throwing in design exploration tools, companies can further enhance their capability to find optimal solutions within given constraints. In the best case without having to build a single prototype for the analysis.

The benefits of model-based approach are not limited to engineering. 3D models that include product and manufacturing information (PMI) make life in the downstream much easier. PMI can be consumed by downstream applications for tooling design and analysis, part planning and CAM programming, plus automated inspection planning and programming.

Models of manufacturing infrastructure are crucial for production optimization. Process simulation tools make use of the models and help remove bottle necks in production and logistics, while detailed models of production lines and automation systems combined with detailed models of products allow for fully virtual production engineering and virtual commissioning, making lot size one a reality in production.

Savings of transforming your business to a model driven digital enterprise are potentially huge. These savings come from improved efficiency of manual processes, increased automation of routine tasks, improved quality of operations and products, and optimized use of resources like energy and materials.

Check out the case story with Varjo “Taking the design process from days, hours, to minutes“, conducted by Siemens.


Are you ready to take the leap? 

Get in touch:

Teppo Salmia

Chief Business Architect, Digital Business Solution

+358 40 5534566 

Håvard Gundersen

Director, Digital Business Solutions

+358 40 5534566

Want to hear more about the topic? 

Join our webinar:

Product Portfolio Management – The six Levels of Typical Products and Services Hierarchy

Product services

(This article is part of a series about Product Portfolio Management, Product Information Management, Product Master Data Management, and Ideal Commercial Product Management solution.)

Product Portfolio management is an analysis and decision-making process that aims to ensure the long-term growth and profitability of the company (Tolonen, 2016). Before going in-depth into product portfolio management, it is important to first understand the concept of a product portfolio and what it consists of. Therefore, our first article will concentrate on the typical products and services hierarchy as defined by Haines (2014).

Product hierarchy is a classification method for modeling the product into its essential components. Based on Haines (2014) the typical products and services hierarchy has six levels, as described in figure 1.

Figure 1. Typical products and services hierarchy. (Haines, 2014).

1. Product Portfolio

A product portfolio is a collection of all the products, product lines, services or other groupings within a business unit or business division. Product portfolios include existing and incoming products and they can be categorized in different ways depending on the organization’s needs. Used criteria for categorization can, for example, be customer segments, product lines, product families, product types, or technology generations, and services. Service products are typically viewed as heterogeneous products because of the customer’s involvement during the rendering of the services. (Tolonen et al., 2016; Haines, 2014).

2. Bundle and Solution

A bundle is a group of individual products or components that are combined to be sold as one combined product (Haines, 2014). A good example of a bundle is a mobile phone that is sold with a subscription. This combination can be classed as a bundle because both components can be bought separately.

Solutions, on the other hand, are aimed at solving complex business problems that usually have a high degree of integration and may require customization. Solutions offer a full range of problem resolution including analysis, recommendation, implementation, and integration and the components cannot be bought separately when a genuine solution is provided. (Haines, 2014).

3. Product line

The product line is a collection of the organization’s related products that are aimed to solve a similar customer problem, are produced using similar methods, or are targeted to similar markets. The product line can be seen as a small product portfolio and companies typically sell multiple product lines under different brand names. (Haines, 2014; Twin, 2019).

Product lines are usually part of marketing strategy and they are used to attract buyers. The rationale behind this is that buyers are more likely to buy from the brand they know and trust and therefore, a company can increase their sales by adding products to the product line or introducing a new product line.

4. Product

“Product is a term used to describe all goods, services, and knowledge sold. Products are bundles of attributes (features, functions, benefits, and uses) and can either be tangible, as in the case of physical goods; intangible as in the case of those associated with service benefits; or can be a combination of the two.” (Kahn, 2013).

The challenge with the aforementioned definition is that when inspected within a business context a product is not always single, standalone item, but organizations can have a hierarchy of products and services (Haines, 2014).

5. Product Element, Modules, or Terms

Product elements or modules, in the context of tangible products, are entities within a product. A good example of a product element is an electric motor that is procured from a subcontractor and is installed into the product. Products can also have intangible elements such as terms. A common denominator for product elements is that they are the building blocks that require oversight in their definition, design, and integration with a larger product or solution (Haines, 2014).

6. Product Platform or Base Architecture

Product platforms are a set of common elements such as technology frameworks, base architectures, parts, and interfaces on top of which products can be built. Product platforms are shared across the range of the company’s products. Product platforms help to provide economies of scale, speed up new product development, reduce development costs and reduce the amount of testing. Good examples of product platforms are car floor systems and gear systems (Haines, 2014; MBASkool).

Tuoteportfolioiden hallinta – Tuote- ja palveluhierarkian kuusi tyypillisintä tasoa

(Tämä artikkeli on osa sarjaa, joka käsittelee tuoteportfolioiden-, tuotetiedon- ja tuotteen ydintiedon hallintaa sekä IDEAL Commercial Product Management -ratkaisua.)

Tuoteportfolion hallinta on yritysjohdon strateginen analyysi ja päätöksentekoprosessi, jonka tarkoituksena on varmistaa organisaation pitkän aikavälin kasvu sekä kannattavuus (Tolonen, 2016). Ennen tuoteportfolion hallinnan syvempää käsittelyä, on hyvä käydä läpi mikä tuoteportfolio on ja mistä se koostuu. Tämän vuoksi sarjan ensimmäisen artikkelin keskittyy Hainesin (2014) tuote- ja palveluhierarkiaan.

Tuotehierarkia on luokittelumenetelmä tuotteen mallintamiseksi sen olennaisiksi komponenteiksi. Hainesin (2014) mukaan tyypillisessä tuote ja palveluhierarkiassa on kuusi tasoa, jotka ovat kuvattuna alla kuviossa 1.

Kuvio 1. Tyypillinen tuote ja palveluhierakia. (Haines, 2014).

1. Tuoteportfolio

Tuoteportfolio on liiketoimintayksikön tai liiketoiminta-alueen kaikkien tuotteiden, tuotelinjojen, palveluiden tai muiden tuoteryhmien kokoelma. Tuoteportfoliot sisältävät nykyiset ja tulevat tuotteet ja ne voidaan luokitella eri tavoin riippuen organisaation tarpeista. Luokitteluun käytettävä kriteeri voi olla esimerkiksi asiakassegmentit, tuotelinjat, tuoteperheet, tuotetyypit, teknologian sukupolvi ja palvelut. Palvelutuotteet nähdään tyypillisesti heterogeenisina tuotteina johtuen asiakkaan osallisuudesta palvelutuotannon aikana. (Tolonen et al., 2016; Haines, 2014).

2. Tuoteyhdistelmä ja ratkaisu

Tuoteyhdistelmä on ryhmä yksittäisiä tuotteita tai komponentteja, jotka yhdistetään yhdeksi myytäväksi tuotteeksi (Haines, 2014). Hyvä esimerkki tuoteyhdistelmästä on matkapuhelin, jonka mukana tulee puhelinliittymä. Tämän tuoteyhdistelmän kumpikin tuote voitaisiin ostaa myös erikseen.

Ratkaisuilla pyritään ratkaisemaan monimutkaisia ​​liiketoimintaongelmia, joiden integraatioaste voi olla korkea ja jotka saattavat edellyttää räätälöintiä. Ratkaisut tarjoavat laajan valikoiman keinoja ongelmien ratkaisemista varten, mukaan lukien analysointi, suositukset, toteutus ja integrointi. Aidon ratkaisun erottaa myös siitä, ettei sen sisältämiä yksittäisiä komponentteja voida ostaa erikseen. (Haines, 2014).

3. Tuotelinja

Tuotelinja on kokoelma organisaation toisiinsa liittyviä tuotteita, jotka on tarkoitettu ratkaisemaan samanlainen asiakasongelma, joita tuotetaan samanlaisilla menetelmillä tai jotka kohdistetaan samoille markkinoille. Tuotelinjaa voidaan pitää pienenä tuoteportfoliona, ja yrityksillä on usein monia tuotelinjoja eri brändeillä. (Haines, 2014; Twin, 2019).

Tuotelinjoja käytetään yleensä osana markkinointistrategiaa houkuttelemaan ostajia. Taustalla on ajatus, että ostajat ostavat todennäköisemmin tuntemaltaan ja luottavalta brändiltä, ​​ja siksi yritys voi lisätä myyntiään lisäämällä tuotteita tuotelinjaansa tai ottamalla käyttöön uuden tuotelinjan.

4. Tuote

Tuote on termi, jota käytetään kuvaamaan kaikkia myytäviä tavaroita, palveluita ja tietoja. Tuotteet ovat ominaisuuksien yhdistelmiä (ominaisuuksia, toimintoja, etuja ja käyttötarkoituksia), ja ne voivat olla joko konkreettisia, kuten fyysisissä palveluissa; aineettomia, kuten palveluissa; tai näiden kahden yhdistelmiä. (Kahn, 2013).

Yllä olevan Kahnin määritelmän haasteena on, että tuote ei ole aina yksittäinen, itsenäinen esine, kun sitä tarkastettaessa liiketoimintaympäristössä, vaan organisaatioilla voi olla tuotteiden ja palveluiden hierarkia (Haines, 2014).

5. Tuote-elementti, moduuli ja ehdot

Puhuttaessa fyysisistä tuotteista, tuote-elementit tai moduulit ovat tuotteiden osakokonaisuuksia. Hyvä esimerkki tuote-elementistä on sähkömoottori, joka hankitaan alihankkijalta ja asennetaan tuotteeseen. Tuotteissa voi olla myös aineettomia elementtejä, kuten ehtoja. Tuote-elementtien yhteinen nimittäjä on, että ne ovat tuotteen rakennusosia, jotka vaativat valvontaa niiden määrittelyssä, suunnittelussa ja integroinnissa suurempaan tuotteeseen tai ratkaisuun. (Haines, 2014).

6. Tuotealusta ja pohja-arkkitehtuuri

Tuotealustat ovat joukko yleisiä elementtejä, kuten teknologiakehyksiä, pohja-arkkitehtuureja, osia ja rajapintoja, joiden päälle tuotteet voidaan rakentaa. Samoja tuotealustoja hyödynnetään useisiin organisaation tuotteisiin. Tuotealustojen avulla pyritään saavuttamaan mittakaavaetuja, nopeuttamaan uusien tuotteiden kehitystä, ja vähentämään kehityskustannuksia ja vähentämään testauksen määrää. Hyvä esimerkki tuotealustasta on auton vaihteisto. (Haines, 2014; MBASkool).


Haines, S. 2014. The Product Manager’s Desk Reference. McGraw-Hill Education.

Kahn, K.B. 2013. The PDMA Handbook of New Product Development. John Wiley & Sons, Inc.

MBASkool. N.d. Product Platform. MBASkool

Tolonen, A. 2016. Product portfolio management over horizontal and vertical portfolios. University of Oulu.

Twin, A. 2019. Product Line. Investopedia.

Oppilaitospäivä / Academic day 29.1.2020


Tämän vuoden Oppilaitospäivässä opetushenkilökuntaa kymmenestä eri oppilaitoksesta kohtasivat Seinäjoen ammattikorkeakoululla 29.1.2020. Jo neljättä kertaa järjestetty Oppilaitospäivä keräsi tällä kertaa yli 40 osallistujaa digitalisaatioteemojen ympärille.
Oppilaitospäivän idea on tuoda oppilaitosten henkilökunta yhteen tutustumaan toisiinsa ja jakamaan kokemuksia Siemens Digital Industries Software:n Digital Enterprise -ratkaisujen best practice -malleista.

Jatka lukemista

Kilpailuetua suunnittelun ja liiketoiminnan automaatiolla

Miten tarjota räätälöityjä tuotteita nopeasti ja tehokkaasti?

Valmistavan teollisuuden digitalisaatio ajaa tuotteiden suunnittelu- ja valmistusprosesseja huomattavaan muutokseen. Viime vuosikymmenten Kiina-ilmiön aikana hiotut offshoring-prosessit määriteltiin enemmän kustannusnäkökulmista kuin läpimenoajan ehdoilla. Valmistuksen siirtyessä yhä korkeampaan automaatioasteeseen, myös suunnitteluprosessit tulevat väistämättä muutoksen eteen. Valmistusta on ruokittava nopeasti ja vieläpä usealla eri reseptillä. Jatka lukemista

Näe yksityiskohdat – Ymmärrä kokonaisuus – Tunnista vaikutukset!

Haastoin taannoin muutaman ihmisen kanssani miettimään, tuleeko mieleen yhtään tuotetta, jota ei koskaan olisi tarvinnut muuttaa. Emme sellaista keksineet, eikä se ole mikään ihme. Kautta aikain ihminen on kehittänyt keksimäänsä ideaa, mikä on johtanut muutostarpeisiin. Toki, tehokkaintahan se olisi keksiä jokin täydellinen tuote, joka ideasta lähtien olisi täydellinen valmistus- ja toimitusketjua sekä asiakasta varten, MUTTA se taitaa olla yhtä mahdoton ajatus kuin ympärivuotinen auringonpaiste Suomenniemellä. Jatka lukemista

CAD/CAM/CAE-suunnittelutyökalujen käytön tehostaminen

Oletko joskus ihmetellyt miksi suunnittelutyö etenee hitaasti, miksi muutosten tekeminen tuntuu hankalalta ja hitaalta tai kenties miksi muutosten yhteydessä usein tapahtuu virheitä? Voisiko yksi syy siihen perustua  CAD/CAM/CAE -työkalujen tehottomaan käyttöön?

Tämä on oman kokemuksen mukaan yllättävän usein syynä. Mutta miten ongelmat syntyvät?

On tärkeää ymmärtää kokonaisuus, jossa suunnittelu- ja valmistusorganisaatio elää. Käsittelemme tässä tekstissä ongelmien syitä kolmelta eri tasolta. Jatka lukemista

Ympäristönäkökulmien huomioiminen tuotekehityksessä

The environmental perspectives in product development

Ilmastonmuutos, mikromuovien päätyminen meriin ja ravintoketjuumme, kaivostoiminnan vastuullisuus ovat hallinneet uutisia viime aikoina. Julkisen keskustelun ansiosta kuluttajien tietoisuus omien valintojensa ympäristövaikutuksista on kasvanut. Tämä on ohjannut niin yksittäisten kuluttajien, kuin yritystenkin ostopäätöksiä entistä ympäristöystävällisempään suuntaan.

Jatka lukemista

Sitouttamisen salat asiantuntija-organisaatiossa

IDEAL PLM työnantajana

PLM-asiantuntijan työ ei ole aina pelkkää juhlaa. Projektipäällikkö painaa yhdestä suunnasta, asiakas toisesta ja myynti kolmannesta. Sitten on vielä perhe ja harrastuksissakin olisi kiva käydä. Olen miettinyt, miksi nämä ihmiset ovat niin sitoutuneita työhönsä ja asiakkaisiin ja pystyvät ylittämään välillä mahdottomilta tuntuvat esteet. Hymy huulilla. Jatka lukemista

Tämän päivän megatrendit

Seuraamalla mediaa ei voi välttyä kuulemasta globaaleista megatrendeistä ja teemoista; digitalisaatio, ilmaston muutos, kestävä kehitys. Nämä asiat askarruttavat varmaan useimpia suomalaisia, osaa enemmän, osaa vähemmän. Digitalisaatio on muuttanut ja tulee muuttamaan ihmisten elämää voimakkaasti. Älypuhelin on osa arkipäivää, ja sen mukanaan tuoma sosiaalinen media. Digitaaliset palvelut yleistyvät, ja useimmat asiat tai tuotteet tulevat digitalisoitumaan ja kytkeytymään internetiin. IOT tulee yhdistämään laitteet palvelun tarjoajiin ja käyttäjiin. Esimerkiksi pesukone voi ohjelman loppuessa ilmoittaa älypuhelimeen, että pyykit olisi aika laittaa kuivumaan tai kone kaipaa vaikka huoltoa.

Jatka lukemista